
1361

0022-4715/04/0300-1361/0 © 2004 Plenum Publishing Corporation

Journal of Statistical Physics, Vol. 114, Nos. 5/6, March 2004 (© 2004)

Negative Virial Coefficients and the Dominance of
Loose Packed Diagrams for D-Dimensional
Hard Spheres

N. Clisby1 and B. M. McCoy1

1 C. N. Yang Institute for Theoretical Physics, State University of New York at Stony Brook,
Stony Brook, New York 11794-3840; e-mail: Nathan.Clisby@stonybrook.edu and mccoy@
insti.physics.sunysb.edu

Received March 16, 2003; accepted June 19, 2003

We study the virial coefficients Bk of hard spheres in D dimensions by means
of Monte-Carlo integration. We find that B5 is positive in all dimensions but
that B6 is negative for all D \ 6. For 7 [ k [ 17 we compute sets of Ree–Hoover
diagrams and find that either for large D or large k the dominant diagrams are
‘‘loose packed.’’ We use these results to study the radius of convergence and the
validity of the many approximations used for the equations of state for hard
spheres.
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1. INTRODUCTION

The question of the possible negativity of virial coefficients Bk in the low
density expansion

P
kBT

=r+ C
.

k=2
Bk rk (1)

of the system of hard spheres with diameter s in D dimensions specified by
the two body pair potential

U(r)=˛+.

0

|r| < s

|r| > s
(2)



Table I. Numerical Values of the Virial Coefficients

Bk/B k−1
2 for k=3,..., 8 for D=2, 3, 4, 5

discs spheres

B2 ps2/2 2ps3/3
B3/B2

2 0.782004 · · · (3) 0.625 (4)

B4/B3
2 0.5322318 · · · (5, 6) 0.2869495 · · · (4, 7, 8)

B5/B4
2 0.33355604(4) (9, 10) 0.110252(1) (9, 11)

B6/B5
2 0.19883(1) (9, 12) 0.038808(55) (9, 13)

B7/B6
2 0.114877(11) (13–15) 0.013046(22) (13–15)

B8/B7
2 0.065030(31) (13, 15) 0.004164(16) (13, 15)

D=4 D=5

B2 p2s4/4 4p2s5/15
B3/B2

2 0.50634 · · · (16) 0.414062 · · · (16)

B4/B3
2 0.15184606 · · · (17) 0.075972512(4) (18)

B5/B4
2 0.03563(7) (18) 0.01287(6) (18)

B6/B5
2 0.007691(28) (18) 0.000942(27) (18)

has been an unresolved problem of outstanding importance since it was
first proposed by Temperley (1) in 1957. For dimensions D [ 5 all currently
available information is summarized in Table I where it is seen that all Bk

are positive. However it was first shown (2) in 1964 for D \ 8 that B4 is
indeed negative. The best available current results for B4 as a function of
dimension are shown in Table II.

Most of our intuition and physical insight into the low density (fluid)
phase of hard spheres in 3 dimensions comes from the 8 term virial expan-
sion of Table I. Over the years this data has been used to produce many
approximate equations of state. (9, 13, 19–33) These approximates all incorpo-
rate the feature of positive virial coefficients and they all have the feature
that they have a radius of convergence which is greater than the packing
fraction gf=0.49 at which freezing has been seen to occur in computer
experiments (24, 34, 35) where the packing fraction g is related to the density r

by g=B2 r/2D − 1. This analyticity at the freezing density is incorporated
into most phenomenological theories of freezing (36–38) as a homogeneity or
mean field approximation which ignores the fluctuations at phase coexis-
tence between the fluid and solid phases. (39)

However, if there are negative virial coefficients for hard spheres in
D=3 then no conclusion on the radius of convergence of the virial expan-
sion based on Table I can be considered as reliable.

The most striking effect of negative viral coefficients will occur if the
signs oscillate with some period as k Q . because this will give a radius of
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Table II. Exact and Numerical Results for B2, B3, and B4 for 2 [ D [ 12

D B2 B3/B2
2 B4/B3

2 exact and numerical

2
ps2

2
4
3

−
`3
p

2 −
9 `3

2p
+

10
p2 0.53223180 · · ·

3
2ps3

3
5/8

219 `2
2240p

−
89
280

+
4131

2240p
arctan `2 0.2869495 · · ·

4
p2s4

4
4
3

−
`3
p

3
2

2 −
27 `3

4p
+

832
45p2

(17)
0.15184606 · · ·

5
4p2s5

15
53/27 0.07597 (18)

6
p3s6

12
4
3

−
`3
p

9
5

2 −
81 `3

10p
+

38848
1575p2

(17)
0.03336314 · · ·

7
8p3s7

105
289/210 0.0098 (2)

8
p4s8

945
4
3

−
`3
p

279
140

2 −
2511 `3

280p
+

17605024
606375p2

(17)
− 0.00255768 · · ·

9
16p4s9

48
6343/215 − 0.00841 (2)

10
p5s10

240
4
3

−
`3
p

297
140

2 −
2673 `3

280p
+

49048616
1528065p2

(17)
− 0.01096248 · · ·

11
32p5s11

10395
35995/218

12
p6s12

1440
4
3

−
`3
p

243
110

2 −
2187 `3

220p
+

11565604768
337702365p2

(17)
− 0.01067028 · · ·

convergence which is not on the positive real axis. If this radius is less than
the freezing density then it will be impossible to reliably learn anything
about the freezing transition from a knowledge of a finite number of virial
coefficients.

It is thus most significant that the sixth and seventh virial coefficients
for parallel hard cubes (40) were shown to be negative in 1962, and even
more important that for an exactly solved hard squares model (41) and the
hard hexagon model (42–44) the radius of convergence is limited by a singu-
larity at complex density thus resulting in virial coefficients that oscillate in
sign.

The purpose of this paper is to extend the results of Tables I and II
and examine as closely as possible the question of whether or not the virial
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coefficients Bk of the hard sphere gas in D dimensions have negative virial
coefficients. The method we shall use is Monte-Carlo evaluations of the
integrals in the Ree–Hoover expansion. In Section 2 we review the for-
malism of the Ree–Hoover expansion to establish our notation. In Sec-
tion 3 we compute the virial coefficients B5 and B6 for dimensions up to
D=50. We find that B5 is not monotonic but is in fact always positive.
More importantly we find that B6 is negative for all D \ 6. Our numerical
results are given in Table III. For higher virial coefficients the number of
contributing diagrams rapidly increases. Consequently in this study we
restrict our attention to various classes of diagrams which are studied in
Section 4 where we are able to determine the class of diagrams which are
dominant for large k. In Section 5 we use our results to form estimates of
the radius of convergence to the virial series and we conclude in Section 6
with an evaluation of the various approximate equations of state for hard
spheres.

Table III. Numerical Results for B4/B 3
2, B5/B 4

2, and B6/B 5
2. The Underline Indicates

the Position of the Local Minima and Maxima. Values for each Coefficient for D=3,

and for B6 in D=4, 5 Are Taken from Table I

D B4/B3
2 B5/B4

2 B6/B5
2

3 0.2869495 · · · 0.110252(1) 0.03881(6)
4 0.1518460 · · · 0.03565(5) 0.00769(3)
5 0.075978(4) 0.01297(1) 0.00094(3)
6 0.03336314 · · · 0.007528(8) − 0.00176(2)
7 0.009873(4) 0.007071(7) − 0.00352(2)
8 − 0.0025576 · · · 0.007429(6) − 0.00451(2)
9 − 0.008575(3) 0.007438(6) − 0.00478(1)

10 − 0.0109624 · · · 0.006969(5) − 0.00452(1)
11 − 0.011334(3) 0.006176(4) − 0.00395(1)
12 − 0.0109624 · · · 0.005244(4) − 0.003261(7)
13 − 0.009523(2) 0.004307(3) − 0.002580(6)
14 − 0.008220(2) 0.003448(3) − 0.001975(4)
15 − 0.006934(2) 0.002705(2) − 0.001472(3)
20 − 0.0024621(7) 0.0006605(7) − 0.0002632(7)
25 − 0.0007580(3) 0.0001348(2) − 3.72(1) × 10−5

30 − 0.0002196(1) 2.515(6) × 10−5 − 4.69(3) × 10−6

35 − 6.162(3) × 10−5 4.47(1) × 10−6 − 5.55(5) × 10−7

40 − 1.697(1) × 10−5 7.69(3) × 10−7 − 6.30(9) × 10−8

45 − 4.618(4) × 10−6 1.298(7) × 10−7 − 7.0(2) × 10−9

50 − 1.247(1) × 10−6 2.16(1) × 10−8 − 7.6(2) × 10−10
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2. REE–HOOVER EXPANSIONS

The original graphical expansion for the virial series is due to Mayer
and Mayer, (45) in which each bond represents the function

f(r)=exp( − U(r)/kBT) − 1 (3)

where r is the distance between the two vertices. A useful re-summation
was performed by Ree and Hoover (9, 46) by introducing the function

f̃(r)=1+f(r)=exp( − U(r)/kBT) (4)

and then expanding each Mayer graph by substituting 1=f̃ − f for pairs
of vertices not connected by f bonds. This method was previously used by
Percus and Yevick (47) in comparing the exact values of the fourth and fifth
virial coefficients with coefficients obtained from the Percus–Yevick equa-
tion, and by Percus (48) in discussing the derivation of the Percus–Yevick
equation.

The fourth virial coefficient may then be written as

B4=−
1
8

−
3
4

−
3
8

=
1
4

” −
3
8

=
1
4

−
3
8

(5)

where the first expression is the expansion in Mayer graphs, the second is
the expansion in Ree–Hoover graphs with the f̃ bonds indicated by dotted
lines and the third shows the equivalent Ree–Hoover graphs with the f
bonds indicated by solid lines. In the second expression the graph with no
f̃ bonds is represented by ”. In the case of hard spheres, the potential is
given by Eq. (2) so f(r) and f̃(r) are particularly simple:

f(r)=˛ − 1

0

|r| < s

|r| > s
(6)

f̃(r)=˛0

+1

|r| < s

|r| > s
(7)

The virial coefficient Bk is given in terms of the Ree–Hoover diagrams
of k points of which m are the end points of f̃ bonds Sk[m, i] and a com-
binatorial factor Ck[m, i] as

Bk=C
m, i

Bk[m, i] (8)
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with

Bk[m, i]=Ck[m, i] Sk[m, i] (9)

where the index i labels the graphs in the class with fixed k, m. The combi-
natorial factor is expressed as

Ck[m, i]=−
k − 1

k!
sk[m, i] ãk[m, i] (10)

with

sk[m, i]=k!/ÄAut Sk[m, i] (11)

where ÄAut Sk[m, i] is the cardinality of the automorphism group of the
diagram Sk[m, i] and ãm, l[k] is the ‘‘star content’’ as defined by Ree and
Hoover. (46) We will let Sk[m, i] represent both the Ree–Hoover graph and
the value of the corresponding integral. The k dependence of Ck[m, i] is
calculated by using the following relation for the star content. (46)

ãk[m, i]=(−1)k − 1 (k − 2) ãk − 1[m, i] (12)

The diagram Sk[m, i] has k − m points that are connected to all other
points by f bonds and are therefore indistinguishable, leading to the
relation

ÄAut Sk[m, i]=(k − m)! ÄAut Sm[m, i] (13)

to obtain for k > m

Ck[m, i]=(−1)k(k − 1)/2 1 k − 1
m − 1

2 Cm[m, i] (14)

where we note that for the complete star diagram Bk[0, 1] we have
Ck[0, 1]=1/k.

For arbitrary D the number of Mayer graphs grows asymptotically as
k Q . as (49)

N(k) ’
2k(k − 1)/2

k!
(15)

However, when the Ree–Hoover transformation is made many diagrams
have zero star content and hence do not contribute to the virial coefficient.
From Table IV it appears that the ratio of contributing Ree–Hoover
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Table IV. Number of Contributing Ree–Hoover and Mayer Diagrams as a Function

of Order. The Number of Ree–Hoover Diagrams with Non-Zero Star Content for k=9

Is a New Result, While the Other Values Are Taken from Refs. 9, 13, and 14

Order

2 3 4 5 6 7 8 9

Mayer 1 1 3 10 56 468 7123 194066
RH 1 1 2 5 23 171 2606 81564
RH, D=2 1 1 2 4 15 78(66)
RH/Mayer 1 1 0.667 0.500 0.410 0.365 0.366 0.420

diagrams to the number of Mayer diagrams is bounded below, and so it is
reasonable to suppose that

lim
k Q .

NRH(k)/N(k) > 0 (16)

In addition Ree–Hoover graphs may be zero for geometrical reasons.
The number of non-zero graphs for D=2 are taken from refs. 9 and 14,
and listed in Table IV, where the value in parentheses excludes diagrams
found to be negligible but which were not proven to be zero. For D=1
only one graph in the Ree–Hoover expansion is non-zero for each k,
namely the complete star, but for D \ 2 it is an open question as to how
many non-zero graphs there are at order k.

2.1. Close Packed Diagrams

The f̃ graph form used by Ree and Hoover (e.g., in ref. 46) has the
property that a single graph represents the sequence of diagrams Bk[m, i]
with m fixed where the (k+1) th order diagram is obtained from the kth by
adding an additional point connected to all other points by an f bond. For
example, all complete star diagrams of order k may be represented by the
same symbol ”. We call such graphs with m < k close packed because no
two points can be further apart than 2s.

We find from Eq. (14) that the sign of Bk[m, i] for fixed m, i is inde-
pendent of k. We further obtain from Eq. (14) for k large and m, i fixed
that

Ck[m, i]=Cm[m, i] 1 km − 1

(m − 1)!
+O(km − 2)2 (17)
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2.2. Loose Packed Diagrams

For diagrams in the class Bk[k, i] there are no points which are con-
nected to all other points by f bonds and therefore there exist sequences of
diagrams which have the property that the size of the configuration grows
as k Q .. We refer to this class of diagrams as ‘‘loose packed.’’ For these
graphs the f bond notation is more convenient.

The simplest loose packed diagram in Bk[k, i] is the simple ring of k
of the f bonds. We denote this diagram by the symbol R. More generally
we consider graphs where a point is replaced by a diagram. We call such
diagrams insertion diagrams and when we wish to make the type of inser-
tion visually apparent we use the notation R( · ) to represent a ring with a
point replaced by a diagram. We also find it useful to label insertion dia-
grams by Rn, l[k] where the index n is the number of points in the inserted
diagram of k total points and l labels the diagrams with given k and n. All
four and five point insertions were found by starting with all four and five
point Mayer graphs, and adding an extra point that is connected to two
points by f bonds. A canonical labeling for this graph was found using
‘‘nauty,’’ a program due to B. McKay, (50) and matched with the five and six
point graphs of Ree and Hoover (9) to find the star content. All insertions
with non-zero star content are given in Table V along with the size of their
automorphism group and over all combinatorial factor. From Eq. (14)
we find the insertion diagrams have the alternating sign property that
(−1)k Rn, l[k] has a sign which depends only on n and l but is independent
of k.

Table V. Four and Five Point Insertions

Diagram Label Group size Lowest order ãl[k] Ck[k, i]

R R 2k 3 1 − (k − 1)/2k

R( ) R4, 1 4 6 1 − (k − 1)/4
R( ) R4, 2 4 5 − 2 (k − 1)/2

R( ) R5, 1 2 8 1 − (k − 1)/2
R( ) R5, 2 12 7 1 − (k − 1)/12
R( ) R5, 3 4 7 − 1 (k − 1)/4
R( ) R5, 4 1 7 − 2 2(k − 1)
R( ) R5, 5 2 6 3 − 3(k − 1)/2
R( ) R5, 6 4 7 − 2 (k − 1)/2
R( ) R5, 7 2 6 1 (k − 1)/2
R( ) R5, 8 4 6 3 − 3(k − 1)/4
R( ) R5, 9 12 6 − 6 (k − 1)/2
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Table VI. Ree–Hoover Diagrams for B4

Label sk[m, i] ãk[m, i] Ck[m, i] f̃ form f form Insertion

B4[0, 1] 1 − 2 2/8 ”

B4[4, 1] 3 1 − 3/8 R[4]

Multiple insertions are also possible when k is sufficiently large. We
denote such a graph with n insertions as R (m)

{n1, ii},..., {nm, im} where the subscripts
indicate the types of insertions. For B6 we see in Table VIII that there are
three graphs which may be interpreted as being composed of two 4-point
insertions.

We give in Tables VI–VIII the Ree–Hoover graphs and their asso-
ciated combinatorial factors for k=4, 5, 6. We here give both the repre-
sentation of the graphs in terms of f̃ and f bonds. For the class of loose
packed graphs in Bk[k, i] we indicate the interpretation in terms of inser-
tion diagrams with either multiple insertions or with a ring of one point
and two bonds. In three cases the identification is not unique.

The labeling index i in Bk[m, i] is chosen such that in D=2 the mag-
nitude of the contribution decreases with increasing i. If the diagram is
identically zero for D=2 then the ordering obtained from D=3 is used
when possible.

3. MONTE-CARLO CALCULATION OF Bk FOR D \ k−1

When D \ k − 1 the integral Sk[m, i] can be written in a form where
the dimension D appears as a simple power in the integrand. Hence the
Monte-Carlo procedure can simultaneously calculate the given Ree–Hoover
diagram in an arbitrary set of dimensions, including non-integer values.
The key advantage of this method over that of ref. 9 used in Section 4 is
that we obtain fast convergence for high dimensions. We first present the
details of the Monte-Carlo method and then the results for B4, B5, and B6.

Table VII. Ree–Hoover Diagrams for B5

Label sk[m, i] ãk[m, i] Ck[m, i] f̃ form f form Insertion

B5[0, 1] 1 − 6 6/30 ”

B5[4, 1] 15 3 − 45/30

B5[5, 1] 30 − 2 60/30 R4, 2[5]
B5[5, 2] 12 1 − 12/30 R[5]
B5[5, 3] 10 1 − 10/30 R4, 1[5]
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Table VIII. Ree–Hoover Diagrams for B6. For Diagrams B6[6, 14], B6[6, 16], and

B6[6, 17] the Assignment of Insertion Diagram Labels Is Not Unique and Both

Possible Assignments Are Shown

Label sk[m, i] ãk[m, i] Ck[m, i] f̃ form f form Insertion

B6[0, 1] 1 24 − 24/144 ”

B6[4, 1] 45 − 12 540/144

B6[5, 1] 180 8 − 1440/144
B6[5, 2] 72 − 4 288/144
B6[5, 3] 60 − 4 240/144

B6[6, 1] 360 3 − 1080/144 R5, 5[6]
B6[6, 2] 180 − 2 360/144 R4, 2[6]
B6[6, 3] 60 1 − 60/144 R[6]
B6[6, 4] 60 − 6 360/144 R5, 9[6]
B6[6, 5] 180 − 5 900/144
B6[6, 6] 90 − 4 360/144
B6[6, 7] 45 4 − 180/144 R (2)

{4, 2}{4, 2}[6]
B6[6, 8] 360 − 1 360/144
B6[6, 9] 360 − 2 720/144 R5, 4[6]

B6[6, 10] 60 4 − 240/144
B6[6, 11] 15 16 − 240/144
B6[6, 12] 180 3 − 540/144 R5, 8[6]
B6[6, 13] 360 1 360/144 R5, 7[6]
B6[6, 14] 90 − 2 180/144 R (2)

{4, 1}{4, 2}[6]
or R5, 6[6]

B6[6, 15] 90 − 1 90/144 R5, 3[6]
B6[6, 16] 180 1 − 180/144 R4, 1[6]

or R5, 1[6]
B6[6, 17] 15 1 − 15/144 R (2)

{4, 1}{4, 1}[6]
or R5, 2[6]

B6[6, 18] 10 4 − 40/144

We believe that all Ree–Hoover diagrams are non-zero for D \ k − 1
as it is possible to obtain a configuration for any diagram. We can see this
by starting with a configuration where the distance between each point is
exactly one, and then since each bond can be independently varied in
length by a small amount we are able to satisfy the constraints imposed by
f and f̃ bonds of any graph.

3.1. Monte-Carlo Method

In order to do the Monte-Carlo integration we need an appropriate
measure for calculating Ree–Hoover diagrams in D-dimensional Euclidean
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space, where we wish to integrate out coordinates to leave ourselves with
the lowest dimensional integral possible. The integrand is a product of f
and f̃ functions; for central potentials this leaves only the inter-particle
distances as appropriate degrees of freedom. These form an independent set
of k(k − 1)/2 coordinates provided that D \ k − 1, where k is the order of
the diagram and hence the number of points in the configuration. After
taking the infinite volume limit, for an arbitrary diagram Sk[m, i] we thus
need to calculate integrals of the form

I=F D
k − 1

i=1
dDri F(rij)=1D

k − 1

i=1
WD − i

2 F D
i < j

daij[V({aij})]D − k F(rij) (18)

where WD − 1 — 2pD/2/C(D/2), aij=|ri − rj |2=aji, V is the volume of the
parallel-piped defined by these distances in Rk − 1, and F(rij) is an arbitrary
function of the inter-particle distances. As shown for example in ref. 51,
V may be expressed by the Cayley–Menger determinant:

V({ai})=| (−1)k

2k − 1
:

0 1 1 1 · · · 1
1 0 a12 a13 · · · a1k

1 a21 0 a23 · · · a2k

1 a31 a32 0 · · · a3k

x x x x z x

1 ak1 ak2 ak3 · · · 0

: }
1
2

(19)

An overall scale factor can be taken out of Eq. (19) by taking a12 to be the
largest value, and then setting a −

ij=aij/a12, so that

I=
1
2

k(k − 1) 1D
k − 1

i=1
WD − i

2 F
.

0
da12 a (k − 1) D/2 − 1

12

×5 D
i < j ] 2

F
1

0
da −

ij
6 V({a12 — 1, a −

ij})D − k F(rij) (20)

A formula similar to Eq. (18) was previously obtained by Percus, (52) in
which the integration of p vectors in dimension D is reduced to an integra-
tion of p vectors in p dimensions.

For the hard sphere fluid, the integrand is either zero or ± 1. In order
to calculate Sk[m, i] with m f̃ bonds and [k(k − 1)/2 − m] f bonds, we
may then proceed as follows. Generate a set of [k(k − 1)/2 − 1] values
uniformly distributed between 0 and 1. Partition these values in two sets,
where the largest m − 1 values along with 1 represent f̃ bonds and the other
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[k(k − 1)/2 − m − 1] values are f bonds, and then randomly assign these
values to edges in the diagram. Check that these values of the edge lengths
squared can be embedded as a simplex in Rk − 1, and if this is the case one
can calculate the volume of the simplex and perform the a12 integral,
making a contribution to the Monte-Carlo integral of

k
D

(a−(k − 1) D/2
m − a−(k − 1) D/2

m+1 ) 1D
k − 1

i=1
WD − i

2 V({a12 — 1, a −

ij})D − k (21)

where am and am+1 are the m th and (m+1) th largest values of aij

respectively.
We have used this procedure to compute B4, B5, and B6. For B4 and

B5 500 batches of 5 × 106 configurations were used, while for B6 20 batches
of 2 × 109 configurations were generated. Uncertainties were calculated
using

Error=5 C
q

j=1

(OIjP−OIP)2

q(q − 1)
6

1
2

(22)

where there are q independent batches with value Ij.

3.2. Results

The values of the individual contributions Bk[m, i] to the virial coef-
ficients Bk for k=4, 5, 6 are given in Appendix A in Tables XII–XIV, for
many values of D [ 50. The values of the virial coefficients Bk/Bk − 1

2 for
D [ 50 are given in Table III.

The most important feature of the virial coefficients in Table III are
the sign changes in B4 and B6. A previous estimate for the dimension
at which B4 becomes negative of D % 7.8 was obtained by Luban and
Baram (16) by means of a linear interpolation of the results of Ree and
Hoover, (2) and also by an independent calculation. We further note the
local minimum at in B5 which confirms the tentative prediction of Loeser
et al. (53) To obtain accurate values for these zeros, minima and maxima as a
function of D the data were fitted with cubic splines. All of these values are
summarized in Table IX. Note that the error estimates were made by
fitting, for example, B4+DB4 and B4 − DB4 with cubic splines to obtain a
confidence interval for where B4 becomes negative. A least squares fit was
not used because the error in values at different dimensions are not inde-
pendent, as they are calculated simultaneously and not as independent
samples.
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Table IX. Maxima and Minima for B4/B 3
2, B5/B 4

2, and B6/B 5
2

B4/B3
2 B5/B4

2 B6/B5
2

Becomes negative Local minimum Becomes negative
Dneg

4 =7.7320(4) D=6.87 Dneg
6 =5.30(2)

Local minimum Local maximum Local minimum
D=10.7583(2) D=8.31 D=8.942(2)

It is most important that B6 becomes negative at a lower dimension
than B4. If this trend continues, we may expect that for B2k the dimension
at which the coefficient becomes negative will decrease for higher orders
and it is not unreasonable to expect that B8 will be negative for D=5 and
possibly even D=4. In addition, even though B5 is always positive, the
existence of a local minimum at D=6.87 shows that the increasing number
of contributing diagrams results in more complex dimensional dependence.

To obtain further insight into the structure of the virial coefficients
we examine the individual contributions in Tables XII–XIV. There we see
by examining the dependence of the contributions on D that by the time
D=50 the Ree–Hoover ring diagram R is several orders of magnitude
greater than all other diagrams. We therefore make the following conjecture:

Conjecture 1.

lim
D Q .

Bk(D)/R(D)=1 (23)

In particular it follows from this conjecture that for each k

(−1)k − 1 Bk(D) > 0 for sufficiently large D (24)

A similar conjecture in terms of Mayer diagrams was made by Frisch and
Percus (54) in the course of their examination of Mayer diagrams at high
dimensionality.

We find further for D=50 that not only does the Ree–Hoover ring
diagram dominate but that the largest diagram in each Bk[m, i] has prop-
erty that if m > mŒ then

Bk[m, i]max ± Bk[mŒ, i]max (25)

We refer to this ordering as the principle of ‘‘loose packed dominance.’’
We also note that within the loose packed class Bk[k, i] that the

ordering of the magnitude of the diagrams at D=2 and at D=50 is dras-
tically different. For example we note that the diagram R4, 1 which vanishes
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identically in D=2 is the second largest diagram for D=50. More
generally we find for D=50 that the contributions in B6[6, i] are ordered
in magnitude as

R > R4, 1 > R4, 2 > R5, 4 > R5, 5 > R5, 3 > R5, 2=R (2)
{4, 1}, {4, 1} (26)

where we use the labeling of insertion diagrams in Tables V and VIII. We
make the observation that these insertion diagrams are the largest in the
class Bk[k, i], and refer to this as ‘‘insertion graph dominance.’’

4. MONTE-CARLO CALCULATION OF HIGH ORDER DIAGRAMS

The observation and conjecture of the dominance of the Ree–Hoover
ring diagram at large dimensions demonstrates that negative virial coeffi-
cients in the hard sphere fluids is a common occurrence. However it says
nothing about the minimum dimension at which the coefficient Bk will
become negative for fixed k nor does it give any indication of whether or
not virial coefficients of odd order can ever be negative. Ideally this ques-
tion should be studied by computing further viral coefficients beyond those
in Table I for large k. Here we will begin this program by examining
selected classes of diagrams Bk[m, i] for values of k up to 17. In particular
we examine the conjecture that the features of loose packed dominance and
insertion graph dominance found for large D and fixed k holds also for
fixed D and large k.

4.1. Method

The Monte-Carlo procedure used for this study is the same as that
used by Ree and Hoover (e.g., in ref. 9). Random configurations are gen-
erated by placing one point at the origin of some arbitrary coordinate
system, then the next is randomly placed within a D-dimensional unit
sphere centered on the first point, and so on. The final configuration is
then tested to see if it satisfies the requirements imposed on distances by
the diagram being calculated. For each diagram we used batches of 106

configurations, with enough batches to give accuracy better than two
percent up to a maximum of 10000 batches, and errors were calculated
using Eq. (22).

4.2. Results

The evaluations of the following diagrams are presented in Tables
XV–XXII of Appendix B for values of k up to 17 and values of D up to 7;
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Table X. Largest Diagrams

Dimension

k 1 2 3 4 5 6 .

4 ” ” ” ” ” ” R
5 ” ” ” ” ” R R
6 ” ” ” ” R R R
7 ” ” ” R R R R
8 ” ” R( ) R R R R
9 ” ” R( ) R( ) R R R

10 ” ” R( ) R( ) R R
11 ” ” R( ) R( ) R R
12 ” ” R( ) R( ) R( ) R
13 ” ” R( ) R( ) R( ) R
14 ” R( ) R( ) R( ) R
15 ” R( ) R( ) R( ) R

Bk[0, 1], Bk[4, 1], Bk[5, 1], R[k], R4, 2[k], R4, 1[k], R5, 5[k], and the ‘‘pin-
wheel diagram’’ in Bk[k − 1, 1] obtained by adding one point which is
connected by f bonds to all points in the Ree–Hoover ring R[k − 1]. We
note that for k=5 the pinwheel is B5[4, 1] and for k=6 it is B6[5, 2].

To investigate the conjecture of loose packed dominance for fixed D
and large k we use the tables of Appendix B to find for each k and D which
diagram of this set is the largest. This is shown in Table X. We also use
Tables XV and XVIII to compute the ratio R/Bk[0, 1], and display
the results in Table XI. From this table we see that for D \ 3 that the
Ree–Hoover ring R quickly dominates the complete star diagram as k
increases. However, for D=2, even though the ratios are monotonically
increasing for k \ 6 the ring has not dominated the complete star at k=17.
If we extrapolate the increasing ratios in Table XI for D=2 we can esti-
mate that the ring will be larger for approximately k ’ 22.

Further information is obtained from the ratios of Bk[4, 1]/Bk[0, 1]
and Bk[5, 1]/Bk[0, 1] plotted in Figs. 1 and 2 of Appendix C. In these
figures it is seen that the ratios Bk[4, 1]/Bk[0, 1] and Bk[5, 1]/Bk[0, 1]
increase linearly with k. Thus while for the values of k studied the ratios
only rarely exceed one it appears that if we extrapolate to sufficiently large
k that the inequalities in Eq. (25) will be satisfied for m, mŒ=0, 4, 5.

The relative size of diagrams in the class Bk[k, i] and Bk[k − 1, i] is
studied by comparing the Ree–Hoover ring diagram R[k] of Table XVIII
with the corresponding pinwheel diagram of Table XXII. It is clear that
in each dimension that for sufficiently large k the pinwheel diagram will
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Table XI. R/”

k D=2 D=3 D=4 D=5 D=6

4 − 0.0299(2) − 0.0942(4) − 0.1964(8) − 0.3405(7) − 0.535(2)
5 0.0238(2) 0.1143(7) 0.362(3) 0.911(6) 1.97(1)
6 − 0.0230(4) − 0.184(2) − 0.91(1) − 3.47(5) − 11.7(2)
7 0.0237(5) 0.337(7) 2.92(6) 18.8(5) 85(2)
8 − 0.0277(6) − 0.73(2) − 10.4(3) − 100(3) − 780(30)
9 0.0350(8) 1.67(5) 44(1) 710(30) 11000(2000)

10 − 0.043(1) − 4.1(1) − 177(7) − 5100(800)
11 0.056(2) 10.3(3) 860(80)
12 − 0.076(2) − 26.0(7) − 3000(800)
13 0.102(3) 60(5)
14 − 0.133(5) − 160(30)
15 0.18(1)
16 − 0.24(2)
17 0.39(5)

vanish, and although this can’t be shown numerically one can see the ratio
of the pinwheel to the ring R[k] decreases rapidly as k increases.

We conclude this discussion of results by examining the relative mag-
nitudes of insertion diagrams in Bk[k, i]. In Figs. 3–5 of Appendix C we
plot the ratios R4, 2/R, R4, 1/R, and R5, 5/R as a function of k for various D.
We see that for sufficiently large k all three ratios have a linear increase
with respect to k. We also note that even though the ratio R4, 1/R4, 2 is
small in low dimensions, it approaches a non-zero constant as k Q ., and
for sufficiently large D the ratio is in fact greater that unity.

The examination of all available data supports the following conjectures.

Conjecture 2. The loose packed diagrams in Bk[k, i] dominate all
other diagrams for large k when D \ 3.

In connection with this conjecture we note that the three largest dia-
grams for B6 in D=5, 6 are R5, 5, R4, 1, and R and that the sum of these
three largest diagrams shares the property with B6 itself of changing sign
between D=5 and D=6. We restrict the conjecture to dimensions D \ 3
because at this stage there is not yet enough data to support the case for
D=2.

Conjecture 3. The insertion diagrams all have the same exponential
rate of growth as the Ree–Hoover ring.
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5. ESTIMATES OF THE RADIUS OF CONVERGENCE

The dominance of loose packed diagrams for fixed D \ 3 and large k
may be used to discuss the question of sign change in the virial coefficients
and the radius of convergence of the virial expansion. Of greatest impor-
tance is the relation of the radius of convergence to the packing fractions
gf at which freezing occurs which have been numerically determined as
gf=0.49 in D=3, (24, 35) gf=0.31 in D=4, and gf=0.19 in D=5 as
obtained from ref. 55 and 56.

It may be that there are sequences of loose packed diagrams that grow
faster than the ring, but for low order the largest diagrams can be charac-
terized as insertion diagrams and these appear to have the same exponen-
tial rate of growth as the ring. Hence we will concentrate on the
Ree–Hoover ring R. We first note that the absolute value of this diagram
must be strictly less than the absolute value of the corresponding Mayer
diagram where all f̃ bonds are replaced by unity. The resulting Mayer ring
diagram has been long ago evaluated (57) in terms of Bessel functions of the
first kind JD/2(x) and thus we obtain

(−1)k − 1 R[k]/Bk − 1
2 [

(k − 1)(2p)kD/2

2kWk − 2
D − 1

F
.

0
dx xD − 1 5JD/2(x)

xD/2
6k

(27)

The large k behavior of this integral is easily obtained by steepest descents
by noting that the maximum value of JD/2(x)/xD/2 occurs at x=0. Thus
we have as k Q .

(−1)k − 1 R[k]/Bk − 1
2 [

(k − 1)(1+D/2)D/2

k1+D/2C(1+D/2)
2k − 2 (28)

and hence R[k] satisfies the bound

|R[k+1]/(B2R[k])| [ 2 (29)

This leads to a packing fraction at the radius of convergence of the sum of
Ree–Hoover diagrams of grh=2−D which is substantially greater than the
lower bound 0.145/2D of Lebowitz and Penrose (58) but which is still much
smaller than the freezing densities gf. This value of grh is of the same order
of magnitude as the lower bounds on the termination density due to Baram
and Fixman (59) which are gt > 0.25838 for D=2 and gt > 0.12681 for
D=3. This is compatible with the pressure being analytic for positive
values of g less than gf because the alternations of sign of R[k] puts the
leading singularity on the negative g axis.
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However the ratios |R[k+1]/(B2R[k])| obtained from Table XVIII
are substantially below the bound Eq. (29). In fact we see from each D \ 4
that there is some value of k such that for all greater values of k the values
of R/Bk − 1

2 increase. The order k must surely be greater than this value
before it can be claimed that the asymptotic regions has been achieved. If
we use that maximum ratios as obtained from Table XVIII we estimate
that for D=4 we have grh ’ 0.12 and for D=5 we have grh ’ 0.052. In
D=3 if we assume that the data of Table XVIII extrapolates to a constant
as k Q . then the radius of convergence of the Ree–Hoover ring is
grh=0.25. At most the ratios are bounded below by 0.91 which leads to
grh=0.27. All of these estimated radii of convergence are substantially less
than the freezing densities gf.

In order for the radius of convergence of the virial series to be larger
than these estimates obtained from the Ree–Hoover ring there must be
cancellations between diagrams in the class Bk[k, i]. Such cancellations can
occur because, for example, the diagrams R4, 2[k] and R5, 5[k] which have
magnitudes comparable to R[k] have signs opposite to R[k]. Furthermore
from Table I we see that Bk is indeed less in magnitude than R[k] for
k=6, 7, 8. What cannot be inferred from the existing data is whether or
not when k is sufficiently large that the diagrams are in their asymptotic
region that the cancellation is severe enough to reduce the exponential rate
of growth of the ratios Bk+1/Bk. Unless the cancellation becomes suffi-
ciently great for the radius of convergence to be larger than the freezing
density then the leading singularity cannot be on the real g axis and there
must be oscillation in the signs of the virial coefficients.

6. APPROXIMATE EQUATIONS OF STATE FOR HARD SPHERES

For over 40 years the eight virial coefficients of Table I have been used
to inspire many approximate equations of state for the low density phase of
hard spheres. These approximates may be grouped by the location of their
leading singularity into the following three classes:

1. High Order Poles at g=1
Examples of these are the proposals of Thiele (19)

Pv/kBT=
1+2g+3g2

(1 − g)2 (30)

Reiss, Frisch, and Lebowitz, (60) and Wertheim (20)

Pv/kBT=
1+g+g2

(1 − g)3 (31)
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Guggenheim (22)

Pv/kBT=
1

(1 − g)4 (32)

and the proposal of Carnahan and Starling (23)

Pv/kBT=
1+g+g2 − g3

(1 − g)3 (33)

We do note that Torquato (32, 33) proposes an equation of state which agrees
with Eq. (33) for g < gf but which is of a different form for g > gf.

2. Simple Poles at (25, 26) or Near the Packing Fraction gcp=0.74048 · · ·
of Closest Packed Hard Spheres (9, 13, 24, 31)

In particular the Padé analysis made in ref. 13 has simple poles at

g=(1.22 ± 0.09i) gcp (34)

which leads to sign oscillations beginning with B45.

3. A Fractional Power Law Divergence at or Near the ‘‘Random Close
Packed’’ Density grcp=0.64 as Defined by Refs. 61–64

These approximates are obtained from a D-log Padé analysis and are
(generalizations) of the form

Pv/kBT=A(g − grcp)−s (35)

As an example s is estimated as 1 in ref. 27, as 0.678 in ref. 28, and 0.76 in
ref. 30. In ref. 29 other values of grcp are chosen and the values of s lie in
the range 0.6 [ s [ 0.9 depending on the approximation used.

All these approximate equations of state share the feature that their
leading singularity is at a value of g which is greater than the freezing
density gf=0.49 and indeed is even greater than the solid end of the phase
transition gs=0.542. This fact has lead to the assumption that the virial
expansion is analytic at the freezing transition gf and this qualitative
feature is incorporated into most of the phenomenological theories used to
describe freezing. (36–39) It is therefore of great importance that the estimates
of the radius of convergence made above on the basis of loose packed
dominance and the assumption of no cancellation estimated the radius of
convergence at no more than 0.27.
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The estimate of the radius of convergence relies on values of k beyond
the first eight virial coefficients used to obtain the approximate equations
of state. Therefore it is fair to say that none of the approximates incorpo-
rates the true large k behavior of the virial coefficients. Thus even if there is
cancellation for large k for the set of close packed diagrams none of the
approximates is based on computations which can observe these cancella-
tions and hence no known approximate equation of state can be considered
reliable. We therefore conclude that at present there exists no evidence to
support the claim that the virial expansion has a radius of convergence
greater than the freezing density gf.

APPENDIX A. INDIVIDUAL DIAGRAM CONTRIBUTIONS FOR B4, B5,

AND B6

In this appendix we tabulate the contributions of the individual
Ree–Hoover diagrams to the virial coefficients for B4, B5, and B6.

Table XII. Individual Diagram Contributions to B4

D B4[0, 1]/B3
2 B4[4, 1] B3

2 B4/B3
2

3 0.31673(2) − 0.029781(8) 0.2869495 · · ·
4 0.1888655 · · · − 0.0370195 · · · 0.1518460 · · ·
5 0.115211(3) − 0.039233(3) 0.075978(4)
6 0.0714700 · · · − 0.0381069 · · · 0.03336314 · · ·
7 0.044927(2) − 0.035055(3) 0.009873(3)
7.7 0.032669(2) − 0.032331(3) 0.000338(3)
7.8 0.031227(2) − 0.031920(3) − 0.000693(3)
8 0.0285344 · · · − 0.0310921 · · · − 0.0025576 · · ·
9 0.018286(1) − 0.026861(3) − 0.008575(3)

10 0.0117986 · · · − 0.0227611 · · · − 0.0109624 · · ·
11 0.0076638(8) − 0.018997(3) − 0.011333(3)
12 0.0050018 · · · − 0.0156721 · · · − 0.0109624 · · ·
13 0.0032819(5) − 0.012805(2) − 0.009523(2)
14 0.0021615(4) − 0.010381(2) − 0.008220(2)
15 0.0014288(3) − 0.008362(2) − 0.006933(2)
20 0.00018830(6) − 0.0026504(7) − 0.0024621(7)
25 0.00002615(1) − 0.0007841(3) − 0.0007580(3)
30 3.763(3) × 10−6 − 0.0002233(1) − 0.0002196(1)
35 5.560(7) × 10−7 − 0.00006217(3) − 0.00006162(3)
40 8.38(1) × 10−8 − 0.00001705(1) − 0.00001697(1)
45 1.284(3) × 10−8 − 4.631(4) × 10−6 − 4.618(4) × 10−6

50 1.992(5) × 10−9 − 1.249(1) × 10−6 − 1.247(1) × 10−6
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Table XIII. Individual Diagram Contributions to B5. Values for Discs and Spheres

Taken from Ref. 9. The Contributions from the Ree–Hoover Ring Diagram B5[5, 2]

Are Underlined

discs spheres D=4 D=5

B5/B4
2 0.3336 0.1103 0.03565(5) 0.01297(1)

B5[0, 1]/B4
2 0.3618 0.1422 0.059015(9) 0.025442(1)

B5[4, 1]/B4
2 − 0.0266 − 0.0314 − 0.02650(2) − 0.019184(5)

B5[5, 1]/B4
2 − 0.0102 − 0.0165 − 0.01762(4) − 0.015511(4)

B5[5, 2]/B4
2 0.0086 0.0162 0.02131(2) 0.022980(7)

B5[5, 3]/B4
2 0 − 0.0002 − 0.0005498(5) − 0.0007622(3)

D=6 D=7 D=8 D=50

B5/B4
2 0.007528(8) 0.007071(7) 0.007429(6) 2.17(1) × 10−8

B5[0, 1]/B4
2 0.0112852(7) 0.0051189(4) 0.0023640(3) 1.67(8) × 10−15

B5[4, 1]/B4
2 − 0.012899(4) − 0.008296(3) − 0.005185(2) − 6.1(1) × 10−13

B5[5, 1]/B4
2 − 0.012351(3) − 0.009220(3) − 0.006588(3) − 1.38(3) × 10−11

B5[5, 2]/B4
2 0.022332(6) 0.020277(6) 0.017522(6) 2.17(1) × 10−8

B5[5, 3]/B4
2 − 0.0008395(4) − 0.0008090(4) − 0.0007149(4) − 4.84(7) × 10−11

Table XIV. Individual Diagram Contributions to B6. Values for Discs and Spheres

Taken from Ref. 9. The Contributions from the Ree–Hoover Ring Diagram B6[6, 3]

Are Underlined. For D=50 When the Value x.xx ×10m Has m [ −16 We Write ’ 10m

discs spheres D=5 D=6

B6/B5
2 0.1994 0.0386 0.00102(8) − 0.00176(2)

B6[0, 1]/B5
2 0.2292 0.0588 0.0048248(9) 0.0014771(1)

B6[4, 1]/B5
2 − 0.0273 − 0.0212 − 0.00569(2) − 0.002600(3)

B6[5, 1]/B5
2 − 0.0191 − 0.0187 − 0.00719(1) − 0.003800(4)

B6[5, 2]/B5
2 0.0090 0.0099 0.00498(2) 0.003038(4)

B6[5, 3]/B5
2 0 − 0.0002 − 0.000244(1) − 0.0001759(3)

B6[6, 1]/B5
2 0.0088 0.0132 0.01029(4) 0.00735(1)

B6[6, 2]/B5
2 0.0077 0.0121 0.01064(4) 0.008204(8)

B6[6, 3]/B5
2 − 0.0051 − 0.0109 − 0.01702(5) − 0.01693(2)

B6[6, 4]/B5
2 − 0.0019 − 0.0027 − 0.001520(4) − 0.0009332(8)

B6[6, 5]/B5
2 − 0.0010 − 0.0022 − 0.001559(9) − 0.001001(2)

B6[6, 6]/B5
2 − 0.0009 − 0.0011 − 0.000553(1) − 0.0003335(3)

B6[6, 7]/B5
2 − 0.0005 − 0.0007 − 0.000437(1) − 0.0002948(3)

B6[6, 8]/B5
2 0.0004 0.0008 0.000712(2) 0.0004958(8)

B6[6, 9]/B5
2 0.0001 0.0012 0.00256(2) 0.002356(7)
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Table XIV. (Continued)

discs spheres D=5 D=6

B6[6, 10]/B5
2 0.0000 0.0002 0.0003086(8) 0.0002481(2)

B6[6, 11]/B5
2 − 0.0000 − 0.0003 − 0.0002596(7) − 0.0001587(1)

B6[6, 12]/B5
2 0 − 0.0002 − 0.000472(2) − 0.0003931(6)

B6[6, 13]/B5
2 0 0.0002 0.000318(4) 0.000285(1)

B6[6, 14]/B5
2 0 − 0.0000 − 0.0000991(5) − 0.0001007(2)

B6[6, 15]/B5
2 0 0.0000 0.000046(2) 0.0000486(9)

B6[6, 16]/B5
2 0 0.0004 0.00138(1) 0.001463(2)

B6[6, 17]/B5
2 0 − 0? − 2.00(1) × 10−6 − 3.176(6) × 10−6

B6[6, 18]/B5
2 0 0 2.59(1) × 10−7 3.696(8) × 10−7

D=7 D=8 D=50

B6/B5
2 − 0.00352(2) − 0.00451(1) − 7.6(2) × 10−10

B6[0, 1]/B5
2 0.00046725(4) 0.00015174(2) ’ 10−22

B6[4, 1]/B5
2 − 0.001145(1) − 0.0004946(6) ’ 10−20

B6[5, 1]/B5
2 − 0.001902(2) − 0.0009209(9) ’ 10−18

B6[5, 2]/B5
2 0.001752(2) 0.0009748(9) ’ 10−16

B6[5, 3]/B5
2 − 0.0001124(2) − 0.0000665(1) ’ 10−18

B6[6, 1]/B5
2 0.004866(6) 0.003063(3) 6.7(7) × 10−15

B6[6, 2]/B5
2 0.005887(5) 0.004019(3) 1.6(1) × 10−13

B6[6, 3]/B5
2 − 0.01540(2) − 0.01318(2) − 7.6(2) × 10−10

B6[6, 4]/B5
2 − 0.0005349(5) − 0.0002926(3) ’ 10−18

B6[6, 5]/B5
2 − 0.000589(1) − 0.0003277(6) ’ 10−18

B6[6, 6]/B5
2 − 0.0001883(1) − 0.00010175(8) ’ 10−18

B6[6, 7]/B5
2 − 0.0001858(2) − 0.0001114(2) ’ 10−17

B6[6, 8]/B5
2 0.0003158(4) 0.0001895(2) ’ 10−17

B6[6, 9]/B5
2 0.001912(4) 0.001428(3) 5.3(5) × 10−14

B6[6, 10]/B5
2 0.0001778(1) 0.0001180(1) ’ 10−16

B6[6, 11]/B5
2 − 0.00008782(7) − 0.00004567(4) ’ 10−20

B6[6, 12]/B5
2 − 0.0002848(4) − 0.0001889(2) ’ 10−17

B6[6, 13]/B5
2 0.0002231(6) 0.0001595(4) ’ 10−16

B6[6, 14]/B5
2 − 0.0000868(2) − 0.0000671(1) ’ 10−16

B6[6, 15]/B5
2 0.0000447(4) 0.0000371(3) 2.2(3) × 10−15

B6[6, 16]/B5
2 0.001358(2) 0.001147(2) 1.34(8) × 10−12

B6[6, 17]/B5
2 − 3.774(8) × 10−6 − 3.758(9) × 10−6 − 1.5(1) × 10−15

B6[6, 18]/B5
2 3.944(9) × 10−7 3.524(9) × 10−7 ’ 10−18
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APPENDIX B. NUMERICAL VALUES OF SELECTED DIAGRAMS TO

HIGH ORDER

In this appendix we tabulate the results of Monte-Carlo evaluations of
selected diagrams Bk[m, i] to orders up to k=17.

Table XV. ”/B k−1
2 =Bk[0, 1]/B k−1

2

k D=2 D=3 D=4 D=5 D=6

3 0.7821(1) 0.6248(2) 0.5063(2) 0.4143(2) 0.3410(2)
4 0.5488(4) 0.3166(3) 0.1888(2) 0.1153(2) 0.0713(2)
5 0.3620(3) 0.1420(2) 0.0591(2) 0.02522(8) 0.01121(7)
6 0.2292(3) 0.0593(2) 0.01648(6) 0.00487(6) 0.00148(2)
7 0.1412(3) 0.0233(2) 0.00424(6) 0.00076(1) 0.000170(3)
8 0.0844(4) 0.0087(2) 0.00101(2) 0.000129(3) 1.81(5) × 10−5

9 0.0505(4) 0.00315(6) 0.000226(5) 1.78(7) × 10−5 1.3(2) × 10−6

10 0.0293(4) 0.00111(2) 5.2(2) × 10−5 2.5(4) × 10−6

11 0.0170(3) 0.000380(8) 1.0(1) × 10−5

12 0.0097(2) 0.000128(3) 2.7(7) × 10−6

13 0.0053(1) 5.2(4) × 10−5

14 0.00304(6) 1.7(3) × 10−5

15 0.00179(4)
16 0.00098(2)
17 0.00055(1)

Table XVI. /Bk−1
2 =Bk[4, 1]/B k−1

2

k D=2 D=3 D=4 D=5 D=6

4 − 0.01644(5) − 0.02981(9) − 0.0370(1) − 0.0391(1) − 0.0382(1)
5 − 0.0264(3) − 0.0316(2) − 0.0270(2) − 0.0189(2) − 0.0130(2)
6 − 0.0285(5) − 0.0219(4) − 0.0117(2) − 0.0059(1) − 0.00256(5)
7 − 0.0239(5) − 0.0114(2) − 0.00403(8) − 0.00130(3) − 0.00039(1)
8 − 0.0183(4) − 0.0056(1) − 0.00120(5)
9 − 0.0123(3) − 0.0025(1)

10 − 0.0086(4)
11 − 0.0056(2)
12 − 0.0038(2)
13 − 0.0023(3)
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Table XVII. /Bk−1
2 =Bk[5, 1]/B k−1

2

k D=2 D=3 D=4 D=5 D=6

5 − 0.01016(6) − 0.0164(1) − 0.01741(9) − 0.01550(9) − 0.0123(1)
6 − 0.0188(3) − 0.0189(2) − 0.0124(2) − 0.0069(1) − 0.00386(8)
7 − 0.0227(3) − 0.0130(3) − 0.0053(1) − 0.00200(4) − 0.00070(1)
8 − 0.0205(4) − 0.0072(1) − 0.00199(5)
9 − 0.0163(3) − 0.0036(1)

10 − 0.0115(5)
11 − 0.0083(2)
12 − 0.0056(3)
13 − 0.0043(5)

Table XVIII. R/B k−1
2 . The Underline Marks the Approximate

Location of the Minimum Value

k D=2 D=3 D=4

3 0.7824(2) 0.6248(2) 0.5063(2)
4 − 0.01639(9) − 0.0298(1) − 0.0371(1)
5 0.00860(6) 0.01623(9) 0.0214(2)
6 − 0.00526(8) − 0.0109(1) − 0.0150(2)
7 0.00335(6) 0.0078(2) 0.0124(2)
8 − 0.00234(5) − 0.0064(1) − 0.0106(2)
9 0.00177(4) 0.0053(1) 0.0098(2)

10 − 0.00125(3) − 0.00452(9) − 0.0091(2)
11 0.00095(2) 0.00392(8) 0.0089(2)
12 − 0.00074(1) − 0.00333(7) − 0.0083(2)
13 0.00055(1) 0.00313(8) 0.0086(2)
14 − 0.00041(1) − 0.0027(1) − 0.0086(2)
15 0.00033(2) 0.0026(1) 0.0087(3)
16 − 0.00023(2)
17 0.00021(3)

k D=5 D=6 D=7

3 0.4139(2) 0.3409(2) 0.2822(2)
4 − 0.03925(5) − 0.03815(8) − 0.0351(1)
5 0.0230(1) 0.02210(6) 0.02025(9)
6 − 0.01689(9) − 0.0173(1) − 0.0153(2)
7 0.0142(3) 0.0144(2) 0.0135(2)
8 − 0.0129(3) − 0.0141(3) − 0.0132(2)
9 0.0126(2) 0.0138(3) 0.0132(3)

10 − 0.0126(3) − 0.0150(3) − 0.0143(3)
11 0.0128(3) 0.0162(3)
12 − 0.0134(3) − 0.0172(3)
13 0.0142(3) 0.0201(4)
14 − 0.0166(3) − 0.0238(5)
15 0.0183(4) 0.0281(6)
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Table XIX. R ( )/B k−1
2 =R4, 2/B k−1

2 . The Underline Marks the Approximate

Location of the Minimum Value

k D=2 D=3 D=4 D=5 D=6

5 − 0.01017(4) − 0.01654(7) − 0.01748(6) − 0.01551(4) − 0.01235(3)
6 0.00756(6) 0.01191(8) 0.01257(6) 0.01067(6) 0.00816(4)
7 − 0.00607(8) − 0.01003(7) − 0.0106(1) − 0.00936(9) − 0.00737(7)
8 0.0051(1) 0.0088(2) 0.0100(1) 0.00902(8) 0.00722(7)
9 − 0.00427(8) − 0.0083(1) − 0.0100(1) − 0.0095(2) − 0.00762(8)

10 0.00381(8) 0.0082(2) 0.0106(2) 0.0106(2)
11 − 0.00309(3) − 0.0075(1) − 0.0109(2) − 0.0116(2)
12 0.00259(3) 0.00728(7) 0.0115(2) 0.0136(3)
13 − 0.00220(3) − 0.0071(3) − 0.0125(3) − 0.0156(3)
14 0.00188(4) 0.0068(4) 0.0140(5) 0.0172(4)
15 − 0.00151(5) − 0.0060(5) − 0.0145(7) − 0.0227(7)
16 0.00131(6)
17 − 0.00096(8)

Table XX. R ( )/B k−1
2 =R4, 1/B k−1

2 . The Underline Marks the Approximate Loca-

tion of the Minimum Value

k D=2 D=3 D=4 D=5

5 − 0.000242(2) − 0.000550(2) − 0.000765(4)
6 0.000435(3) 0.000984(7) 0.00137(1)
7 − 1.03(5) × 10−8 − 0.000342(5) − 0.00078(1) − 0.00112(1)
8 5.0(2) × 10−7 0.000294(6) 0.00076(1) 0.00107(1)
9 − 3.5(2) × 10−6 − 0.000290(6) − 0.00073(1) − 0.00108(2)

10 8.6(4) × 10−6 0.000278(6) 0.00074(1) 0.00121(2)
11 − 1.53(8) × 10−5 − 0.000281(6) − 0.00082(2) − 0.00135(3)
12 1.83(9) × 10−5 0.000273(8) 0.00085(2) 0.00154(3)
13 − 1.90(9) × 10−5 − 0.00029(1) − 0.00090(3) − 0.00178(4)
14 2.1(1) × 10−5 0.00028(2) 0.00104(4) 0.00205(5)
15 − 1.79(9) × 10−5 − 0.00026(2) − 0.00102(6) − 0.00244(9)
16 1.6(1) × 10−5

17 − 1.3(1) × 10−5

18 1.3(2) × 10−5
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Table XXI. R ( )/B k−1
2 =R5, 5/B k−1

2

k D=2 D=3 D=4

6 0.00848(7) 0.01328(9) 0.01286(5)
7 − 0.0063(1) − 0.0094(1) − 0.00947(9)
8 0.00469(9) 0.0078(1) 0.0081(1)
9 − 0.00363(7) − 0.0065(1) − 0.00748(9)

10 0.00290(6) 0.0061(1) 0.0076(1)
11 − 0.00230(8) − 0.0056(1) − 0.0072(1)
12 0.0020(1) 0.0051(1) 0.0075(2)
13 − 0.0017(2) − 0.0045(2) − 0.0080(2)
14 0.0013(2) 0.0048(3) 0.0077(3)
15 − 0.00097(24) − 0.0043(4) − 0.0087(5)

Table XXII. Pinwheel/B k−1
2

k D=2 D=3 D=4

5 − 0.0266(1) − 0.0315(1) − 0.02647(6)
6 0.00906(9) 0.01000(8) 0.00754(6)
7 − 0.00194(4) − 0.00230(3) − 0.00178(3)
8 0.000187(4) 0.000302(6) 0.000261(5)
9 − 3.7(1) × 10−6 − 0.0000157(5) − 0.000022(1)

10 2(1) × 10−8 5(1) × 10−7 8(4) × 10−7
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APPENDIX C. GRAPHS OF THE RATIO OF SELECTED DIAGRAMS

TO HIGH ORDER

In this appendix we graph the ratios Bk[4, 1]/Bk[0, 1], Bk[5, 1]/
Bk[0, 1], R4, 2/R, R4, 1/R, and R5, 5/R to orders up to k=17.

Fig. 1. Absolute value of /”=Bk[4, 1]/Bk[0, 1] in dimensions 2 (triangles), 3 (filled
circles), and 4 (crosses).

Fig. 2. Absolute value of /”=Bk[5, 1]/Bk[0, 1] in dimensions 2 (triangles), 3 (filled
circles), and 4 (crosses).
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Fig. 3. Absolute value of R( )/R=R4, 2/R in dimensions 2 (triangles), 3 (filled circles),
4 (crosses), and 5 (squares).

Fig. 4. Absolute value of R( )/R=R4, 1/R in dimensions 2 (triangles), 3 (filled circles),
4 (crosses), and 5 (squares).
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Fig. 5. Absolute value of R( )/R=R5, 5/R in dimensions 2 (triangles), 3 (filled circles),
and 4 (crosses).
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